58 research outputs found

    Efficacy, Retention, and Tolerability of Brivaracetam in Patients With Epileptic Encephalopathies: A Multicenter Cohort Study From Germany

    Get PDF
    Objective: To evaluate the efficacy and tolerability of brivaracetam (BRV) in a severely drug refractory cohort of patients with epileptic encephalopathies (EE).Method: A multicenter, retrospective cohort study recruiting all patients treated with EE who began treatment with BRV in an enrolling epilepsy center between 2016 and 2017.Results: Forty-four patients (27 male [61%], mean age 29 years, range 6 to 62) were treated with BRV. The retention rate was 65% at 3 months, 52% at 6 months and 41% at 12 months. A mean retention time of 5 months resulted in a cumulative exposure to BRV of 310 months. Three patients were seizure free during the baseline. At 3 months, 20 (45%, 20/44 as per intention-to-treat analysis considering all patients that started BRV including three who were seizure free during baseline) were either seizure free (n = 4; 9%, three of them already seizure-free at baseline) or reported at least 25% (n = 4; 9%) or 50% (n = 12; 27%) reduction in seizures. An increase in seizure frequency was reported in two (5%) patients, while there was no change in the seizure frequency of the other patients. A 50% long-term responder rate was apparent in 19 patients (43%), with two (5%) free from seizures for more than six months and in nine patients (20%, with one [2 %] free from seizures) for more than 12 months. Treatment-emergent adverse events were predominantly of psychobehavioural nature and were observed in 16%.Significance: In this retrospective analysis the rate of patients with a 50% seizure reduction under BRV proofed to be similar to those seen in regulatory trials for focal epilepsies. BRV appears to be safe and relatively well tolerated in EE and might be considered in patients with psychobehavioral adverse events while on levetiracetam

    Perampanel as Precision Therapy in Rare Genetic Epilepsies

    Get PDF
    Objective: Perampanel, an antiseizure drug with AMPA-receptor antagonist properties, may have a targeted effect in genetic epilepsies with overwhelming glutamate receptor activation. Special interest holds epilepsies with loss of GABA inhibition (e.g. SCN1A), overactive excitatory neurons (e.g. SCN2A, SCN8A ), and variants in glutamate receptors (e.g. GRIN2A). We aimed to collect data from a large rare genetic epilepsy cohort treated with perampanel, to detect possible subgroups with high efficacy. Methods: A multicenter project based on the framework of NETRE (Network for Therapy in Rare Epilepsies), a web of pediatric neurologists treating rare epilepsies. Retrospective data from patients with genetic epilepsies treated with perampanel was collected. Outcome measures were responder rate (50% seizure reduction), and percentage of seizure reduction after 3 months of treatment. Subgroups of etiologies with high efficacy were identified. Results: 137 patients, with 79 different etiologies, aged 2 months-61 years (mean 15.48±9.9) were enrolled. The mean dosage was 6.45±2.47 mg, and treatment period was 2.0±1.78 years (1.5 months-8 years). 62 patients (44.9%) were treated for >2 years. 98 patients (71%) were responders, and 93 (67.4%) chose to continue therapy. The mean reduction in seizure frequency was 56.61±34.36%. 60 patients (43.5%) sustained over 75% reduction in seizure frequency, including 38 (27.5%) with > 90% reduction in seizure frequency. The following genes showed high treatment efficacy: SCN1A, GNAO1, PIGA, PCDH19, SYNGAP1, POLG1, POLG2, NEU1. 11/17 (64.7%) of patients with SCN1A, 35.3% of which had over 90% seizure reduction. Other etiologies remarkable for over 90% reduction in seizures were GNAO1 and PIGA. 14 patients had a CSWS EEG pattern and in 6 subjects perampanel reduced epileptiform activity. Significance: Perampanel demonstrated high safety and efficacy in patients with rare genetic epilepsies, especially in SCN1A, GNAO1, PIGA, PCDH19, SYNGAP1, CDKL5, NEU1 and POLG, suggesting a targeted effect related to glutamate transmission

    GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture

    Get PDF
    Epilepsy is a highly heritable disorder affecting over 50 million people worldwide, of which about one-third are resistant to current treatments. Here we report a multi-ancestry genome-wide association study including 29,944 cases, stratified into three broad categories and seven subtypes of epilepsy, and 52,538 controls. We identify 26 genome-wide significant loci, 19 of which are specific to genetic generalized epilepsy (GGE). We implicate 29 likely causal genes underlying these 26 loci. SNP-based heritability analyses show that common variants explain between 39.6% and 90% of genetic risk for GGE and its subtypes. Subtype analysis revealed markedly different genetic architectures between focal and generalized epilepsies. Gene-set analyses of GGE signals implicate synaptic processes in both excitatory and inhibitory neurons in the brain. Prioritized candidate genes overlap with monogenic epilepsy genes and with targets of current antiseizure medications. Finally, we leverage our results to identify alternate drugs with predicted efficacy if repurposed for epilepsy treatment

    Genome-wide identification and phenotypic characterization of seizure-associated copy number variations in 741,075 individuals

    Get PDF
    Copy number variants (CNV) are established risk factors for neurodevelopmental disorders with seizures or epilepsy. With the hypothesis that seizure disorders share genetic risk factors, we pooled CNV data from 10,590 individuals with seizure disorders, 16,109 individuals with clinically validated epilepsy, and 492,324 population controls and identified 25 genome-wide significant loci, 22 of which are novel for seizure disorders, such as deletions at 1p36.33, 1q44, 2p21-p16.3, 3q29, 8p23.3-p23.2, 9p24.3, 10q26.3, 15q11.2, 15q12-q13.1, 16p12.2, 17q21.31, duplications at 2q13, 9q34.3, 16p13.3, 17q12, 19p13.3, 20q13.33, and reciprocal CNVs at 16p11.2, and 22q11.21. Using genetic data from additional 248,751 individuals with 23 neuropsychiatric phenotypes, we explored the pleiotropy of these 25 loci. Finally, in a subset of individuals with epilepsy and detailed clinical data available, we performed phenome-wide association analyses between individual CNVs and clinical annotations categorized through the Human Phenotype Ontology (HPO). For six CNVs, we identified 19 significant associations with specific HPO terms and generated, for all CNVs, phenotype signatures across 17 clinical categories relevant for epileptologists. This is the most comprehensive investigation of CNVs in epilepsy and related seizure disorders, with potential implications for clinical practice

    Therapeutic advances in Dravet syndrome: a targeted literature review

    No full text
    Introduction: Dravet syndrome (DS), a prototypic developmental and genetic epileptic encephalopathy (DEE), is characterized by an early onset of treatment-refractory seizures, together with impairments in motor control, behavior, and cognition. Even with multiple conventional anti-epileptic drugs, seizures remain poorly controlled, and there has been a considerable unmet need for effective and tolerable treatments. Areas covered: This targeted literature review aims to highlight recent changes to the therapeutic landscape for DS by summarizing the most up-to-date, evidence-based research, including pivotal data from the clinical development of stiripentol, cannabidiol, and fenfluramine, which are important milestones for DS treatment, together with the latest findings of other pharmacotherapies in development. In phase III, double-blind, placebo-controlled randomized controlled trials stiripentol, cannabidiol, and fenfluramine have shown clinically relevant reductions in convulsive seizure frequency, and are generally well tolerated. Stiripentol was associated with responder rates (greater than 50% reduction in convulsive seizure frequency) of 67%-71%, when added to valproic acid and clobazam; cannabidiol was associated with responder rates of 43%-49% (48%-63% in conjunction with clobazam), and fenfluramine of 54%-68% across studies. Therapies in development include soticlestat, ataluren, verapamil, and clemizole, with strategies to treat the underlying cause of DS, including gene therapy and antisense oligonucleotides beginning to emerge from preclinical studies. Expert opinion: Despite the challenges of drug development in rare diseases, this is an exciting time for the treatment of DS, with the promise of new efficacious and well-tolerated therapies, which may pave the way for treatment advances in other DEEs

    Expanding the Treatment Landscape for Lennox-Gastaut Syndrome: Current and Future Strategies

    No full text
    Lennox-Gastaut syndrome (LGS), a childhood-onset severe developmental and epileptic encephalopathy (DEE), is an entity that encompasses a heterogenous group of aetiologies, with no single genetic cause. It is characterised by multiple seizure types, an abnormal EEG with generalised slow spike and wave discharges and cognitive impairment, associated with high morbidity and profound effects on the quality of life of patients and their families. Drug-refractory seizures are a hallmark and treatment is further complicated by its multiple morbidities, which evolve over the patient's lifetime. This review provides a comprehensive overview of the current and future options for the treatment of seizures associated with LGS. Six treatments are specifically indicated as adjunct therapies for the treatment of seizures associated with LGS in the US: lamotrigine, clobazam, rufinamide, topiramate, felbamate and most recently cannabidiol. These therapies have demonstrated reductions in drop seizures in 15%-68% of patients across trials, with responder rates (≥ 50% reduction in drop seizures) of 37%-78%. Valproate is still the preferred first-line treatment, generally in combination with lamotrigine or clobazam. Other treatments frequently used off-label include the broad spectrum anti-epileptic drugs (AED) levetiracetam, zonisamide and perampanel, while recent evidence from observational studies has indicated that a newer AED, the levetiracetam analogue brivaracetam, may be effective and well tolerated in LGS patients. Other treatments in clinical development include fenfluramine in late phase III, perampanel, soticlestat-OV953/TAK-953, carisbamate and ganaxolone. Non-pharmacologic interventions include the ketogenic diet, vagus nerve stimulation and surgical interventions; these are also expanding, with the potential for less invasive techniques for corpus callosotomy that have promise for reducing complications. However, despite these advancements, patients continue to experience a significant burden. Because LGS is not a single entity, tailoring of treatment is needed as opposed to a 'one size fits all' approach. Further research is needed into the underlying aetiologies and pathophysiology of LGS, together with advancements in treatments that encompass the spectrum of seizures associated with this complex syndrome

    Review of the treatment options for epilepsy in tuberous sclerosis complex: towards precision medicine

    No full text
    Tuberous sclerosis complex (TSC) is a rare genetic disorder caused by mutations in the TSC1 or TSC2 genes, which encode proteins that antagonise the mammalian isoform of the target of rapamycin complex 1 (mTORC1) – a key mediator of cell growth and metabolism. TSC is characterised by the development of benign tumours in multiple organs, together with neurological manifestations including epilepsy and TSC-associated neuropsychiatric disorders (TAND). Epilepsy occurs frequently and is associated with significant morbidity and mortality; however, the management is challenging due to the intractable nature of the seizures. Preventative epilepsy treatment is a key aim, especially as patients with epilepsy may be at a higher risk of developing severe cognitive and behavioural impairment. Vigabatrin given preventatively reduces the risk and severity of epilepsy although the benefits for TAND are inconclusive. These promising results could pave the way for evaluating other treatments in a preventative capacity, especially those that may address the underlying pathophysiology of TSC, including everolimus, cannabidiol and the ketogenic diet (KD). Everolimus is an mTOR inhibitor approved for the adjunctive treatment of refractory TSC-associated seizures that has demonstrated significant reductions in seizure frequency compared with placebo, improvements that were sustained after 2 years of treatment. Highly purified cannabidiol, recently approved in the US as Epidiolex® for TSC-associated seizures in patients ⩾1 years of age, and the KD, may also participate in the regulation of the mTOR pathway. This review focusses on the pivotal clinical evidence surrounding these potential targeted therapies that may form the foundation of precision medicine for TSC-associated epilepsy, as well as other current treatments including anti-seizure drugs, vagus nerve stimulation and surgery. New future therapies are also discussed, together with the potential for preventative treatment with targeted therapies. Due to advances in understanding the molecular genetics and pathophysiology, TSC represents a prototypic clinical syndrome for studying epileptogenesis and the impact of precision medicine

    First report of a Chinese strain of coxsackie B3 virus infection in a newborn in Germany in 2011: a case report

    Get PDF
    Introduction: Enteroviruses commonly encounter babies and children and infections present in a wide variety of symptoms ranging from asymptomatic infection, benign illness, and aseptic meningitis, hand-foot-and-mouth disease to severe life-threatening disease. Some newborns develop severe disease in the first 2 weeks of life and long-term sequelae may occur among survivors. Case presentation: We present a case report of a Caucasian newborn baby boy with severe encephalitis and systemic coxsackievirus B3 infection. The coincidence of maternal infection as well as previous mild respiratory illness in his sister suggests either prenatal or horizontal postnatal transmission. An electroencephalogram showed a severe pathologic pattern with theta-delta-rhythm and spike-wave complexes on both hemispheres. We also observed an unusual prolonged viremia for a period of 6 weeks. Due to the lack of specific antiviral treatment options, the supportive management included ventilation and medical treatment of seizures. Phylogenetic analysis revealed a genogroup D2 virus previously exclusively detected in China and now described in Europe for the first time. Conclusions: Enteroviral infection is an important differential diagnosis in neonatal encephalitis. Prolonged viremia must be taken into account and might correlate with disease severity. The newly observed enterovirus genotype D2 is spreading from Asia to other continents

    The burden of illness in Lennox–Gastaut syndrome: a systematic literature review

    Get PDF
    Background: Lennox–Gastaut syndrome (LGS) is a severe developmental and epileptic encephalopathy characterized by drug-resistant epilepsy with multiple seizure types starting in childhood, a typical slow spike-wave pattern on electroencephalogram, and cognitive dysfunction. Methods: We performed a systematic literature review according to the PRISMA guidelines to identify, synthesize and appraise the burden of illness in LGS (including “probable” LGS). Studies were identified by searching MEDLINE, Embase and APA PsychInfo, Cochrane’s database of systematic reviews, and Epistemonikos. The outcomes were epidemiology (incidence, prevalence or mortality), direct and indirect costs, healthcare resource utilization, and patient and caregiver health-related quality of life (HRQoL). Results: The search identified 22 publications evaluating the epidemiology (n = 10), direct costs and resource (n = 10) and/or HRQoL (n = 5). No studies reporting on indirect costs were identified. With no specific ICD code for LGS in many regions, several studies had to rely upon indirect methods to identify their patient populations (e.g., algorithms to search insurance claims databases to identify “probable” LGS). There was heterogeneity between studies in how LGS was defined, the size of the populations, ages of the patients and length of the follow-up period. The prevalence varied from 4.2 to 60.8 per 100,000 people across studies for probable LGS and 2.9–28 per 100,000 for a confirmed/narrow definition of LGS. LGS was associated with high mortality rates compared to the general population and epilepsy population. Healthcare resource utilization and direct costs were substantial across all studies. Mean annual direct costs per person varied from 24,048to24,048 to 80,545 across studies, and home-based care and inpatient care were significant cost drivers. Studies showed that the HRQoL of patients and caregivers was adversely affected, although only a few studies were identified. In addition, studies suggested that seizure events were associated with higher costs and worse HRQoL. The risk of bias was low or moderate in most studies. Conclusions: LGS is associated with a significant burden of illness featuring resistant seizures associated with higher costs and worse HRQoL. More research is needed, especially in evaluating indirect costs and caregiver burden, where there is a notable lack of studies
    • …
    corecore